Fits the BPPO model to time-to-event data.
bppo(formula, degree, data, approach = c("mle", "bayes"), ...)
formula | a Surv object with time-to-event observations, right censoring status and explanatory terms. |
---|---|
degree | Bernstein polynomial degree. |
data | a data.frame object. |
approach | Bayesian or maximum likelihood estimation methods, default is approach = "mle". |
... | further arguments passed to or from other methods |
An object of class `spbp`.
library("spsurv") data("veteran") fit <- bppo(Surv(time, status) ~ karno + celltype, data = veteran)#>summary(fit)#> Bernstein Polynomial based Proportional Odds model #> Call: #> spbp.default(formula = Surv(time, status) ~ karno + celltype, #> degree = degree, data = veteran, approach = "mle", model = "po") #> #> n= 137, number of events= 128 #> #> coef exp(coef) se(coef) z Pr(>|z|) #> karno -0.06127 0.94057 0.00877 -6.98 2.9e-12 *** #> celltypesmallcell 1.28876 3.62828 0.43726 2.95 0.0032 ** #> celltypeadeno 1.43812 4.21275 0.47370 3.04 0.0024 ** #> celltypelarge 0.10805 1.11411 0.46658 0.23 0.8169 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Likelihood ratio test= 73.3 on 4 df, p=5e-15 #> Wald test = 65.4 on 4 df, p=2e-13