Residuals for a fitted spbp
model.
# S3 method for spbp residuals(object, type = c("cox-snell"), ...)
object | an object of class `spbp` result of a |
---|---|
type | type of residuals, default is "cox-snell" |
... | further arguments passed to or from other methods |
spbp
.
library("spsurv") data("veteran") fit <- bpph(Surv(time, status) ~ karno + factor(celltype), data = veteran)#>residuals(fit)#> time survival1 #> 77 0.0000000 0.008047894 #> 85 0.0000000 0.008047894 #> 95 -0.6931472 0.016154046 #> 53 -1.0986123 0.024317778 #> 18 -1.3862944 0.032538408 #> 42 -1.9459101 0.057534783 #> 97 -1.9459101 0.057534783 #> 119 -1.9459101 0.057534783 #> 12 -2.0794415 0.065976082 #> 46 -2.0794415 0.065976082 #> 100 -2.0794415 0.065976082 #> 116 -2.0794415 0.065976082 #> 6 -2.3025851 0.083018223 #> 45 -2.3025851 0.083018223 #> 15 -2.3978953 0.091617646 #> 51 -2.4849066 0.100268353 #> 60 -2.4849066 0.100268353 #> 20 -2.5649494 0.108969626 #> 93 -2.5649494 0.108969626 #> 89 -2.7080502 0.126520990 #> 130 -2.7080502 0.126520990 #> 26 -2.7725887 0.135369634 #> 31 -2.8903718 0.153209212 #> 37 -2.8903718 0.153209212 #> 109 -2.8903718 0.153209212 #> 123 -2.9444390 0.162198687 #> 128 -2.9444390 0.162198687 #> 33 -2.9957323 0.171233645 #> 96 -2.9957323 0.171233645 #> 30 -3.0445224 0.180313352 #> 92 -3.0445224 0.180313352 #> 28 -3.0910425 0.189437074 #> 98 -3.1780538 0.207813624 #> 108 -3.1780538 0.207813624 #> 14 -3.2188758 0.217064980 #> 81 -3.2188758 0.217064980 #> 90 -3.2188758 0.217064980 #> 103 -3.2188758 0.217064980 #> 40 -3.2958369 0.235690171 #> 107 -3.3672958 0.254473759 #> 16 -3.4011974 0.263923112 #> 86 -3.4011974 0.263923112 #> 34 -3.4339872 0.273409856 #> 111 -3.4339872 0.273409856 #> 80 -3.4965076 0.292492584 #> 48 -3.5553481 0.311716079 #> 117 -3.5835189 0.321378788 #> 11 -3.7376696 0.380022766 #> 131 -3.7612001 0.389901322 #> 87 -3.7841896 0.399807844 #> 124 -3.8066625 0.409741624 #> 118 -3.8712010 0.439699459 #> 137 -3.8918203 0.449735237 #> 38 -3.9318256 0.469877380 #> 106 -3.9318256 0.469877380 #> 112 -3.9318256 0.469877380 #> 35 -3.9512437 0.479982370 #> 114 -3.9512437 0.479982370 #> 126 -3.9512437 0.479982370 #> 129 -3.9702919 0.490109064 #> 19 -3.9889840 0.500256782 #> 41 -3.9889840 0.500256782 #> 29 -4.0253517 0.520612608 #> 24 -4.0775374 0.551287353 #> 102 -4.1108739 0.571823544 #> 43 -4.1431347 0.592422810 #> 1 -4.2766661 0.685766363 #> 115 -4.2904594 0.696191128 #> 105 -4.3820266 0.769371356 #> 125 -4.3820266 0.769371356 #> 7 -4.4067192 0.790330100 #> 110 -4.4188406 0.800815182 #> 122 -4.4308168 0.811303390 #> 72 -4.4659081 0.842781793 #> 94 -4.4659081 0.842781793 #> 113 -4.4998097 0.874270700 #> 47 -4.5217886 0.895262897 #> 54 -4.5538769 0.926741607 #> 104 -4.5538769 0.926741607 #> 22 -4.5747110 0.947716003 #> 99 -4.5951199 0.968677406 #> 101 -4.5951199 0.968677406 #> 10 -4.6051702 0.979152237 #> 69 -4.6051702 0.979152237 #> 67 -4.6347290 1.010548639 #> 91 -4.6347290 1.010548639 #> 66 -4.6539604 1.031452470 #> 8 -4.7004804 1.083596853 #> 76 -4.7095302 1.094003359 #> 134 -4.7095302 1.094003359 #> 71 -4.7184989 1.104401684 #> 25 -4.7621739 1.156260508 #> 49 -4.7621739 1.156260508 #> 5 -4.7706846 1.166603804 #> 39 -4.8040210 1.207873697 #> 21 -4.8121844 1.218164192 #> 4 -4.8362819 1.248967507 #> 50 -4.8828019 1.310250457 #> 133 -4.8903491 1.320420370 #> 32 -4.9344739 1.381163805 #> 120 -4.9416424 1.391240650 #> 65 -4.9628446 1.421388648 #> 13 -4.9698133 1.431410221 #> 27 -5.0172798 1.501167122 #> 23 -5.0304379 1.520970045 #> 63 -5.0498560 1.550567780 #> 52 -5.0875963 1.609381169 #> 56 -5.0875963 1.609381169 #> 127 -5.0998664 1.628873563 #> 55 -5.1761497 1.754258768 #> 64 -5.2040067 1.801909658 #> 121 -5.2257467 1.839819194 #> 62 -5.2983174 1.971199177 #> 84 -5.3033049 1.980515613 #> 57 -5.3752784 2.119456976 #> 3 -5.4293456 2.229918698 #> 73 -5.4424177 2.257500375 #> 135 -5.4424177 2.257500375 #> 74 -5.4889377 2.358711202 #> 68 -5.5214609 2.432560237 #> 61 -5.5606816 2.525412561 #> 59 -5.6276211 2.694920441 #> 88 -5.6454469 2.742717470 #> 36 -5.6594822 2.781218270 #> 9 -5.7493930 3.048286406 #> 132 -5.8289456 3.319391015 #> 82 -5.8777358 3.504789944 #> 136 -5.9348942 3.742623755 #> 17 -5.9506426 3.812264637 #> 79 -5.9635793 3.870831863 #> 44 -5.9712618 3.906195203 #> 2 -6.0185932 4.133663438 #> 83 -6.1463293 4.824436019 #> 58 -6.3153580 5.830618119 #> 78 -6.3750248 6.168664639 #> 75 -6.8987145 10.271662961 #> 70 -6.9067548 10.588131805